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pQTLs identified in an Alzheimer’s Disease cohort are enriched for 
complement and coagulation cascades and extracellular activities

Quantitative trait loci (QTL) analysis is a useful tool for understanding the genetic etiologies of the molecular mechanisms underlying
human health and disease. While a vast body of expression QTL (eQTL) studies have provided important insights into the relationship
between genetic variation and gene expression, studying the impact of genetic variation on protein levels could provide greater insights
into complex human biology. Recent advancements in proteomics – unbiased, deep, and scalable assessment of the plasma proteome
using physicochemically distinct nanoparticles coupled with liquid chromatography-mass spectrometry (LC-MS)1 – have enabled high-
resolution protein QTL (pQTL) analysis. While proteogenomics approaches have potential for a better understanding of human health
through the identification of new disease biomarkers and drug targets or the development of new diagnostic tools to improve disease
prediction, a comprehensive evaluation of existing computational tools employed to perform pQTL analysis should be performed to
ensure reliable and sensitive results. Here, we used intensities from 5,061 proteins groups (acquired using the Proteograph™ Workflow
and LC-MS measurements) and genotyping array data to compute pQTL associations in 184 plasma samples.
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Conclusions

We found REGENIE to be slower than BOLT but the two to be equivalent in performance and results, whereas PLINK reported 2X 
faster results than BOLT for pQTL analysis.
Project-specific libraries produce protein quantification results that are less sparse than standard libraries, leading to increased 
pQTL densities.

Figure 1. pQTL Analysis Workflow.
In our pQTL analysis workflow, 184 human plasma samples from a balanced Alzheimer’s Disease (AD) cohort were genotyped on the GSA array.
The same samples were processed using the Proteograph™ workflow and a panel of five proprietary engineered nanoparticles. After processing,
an LC-MS analysis was conducted on the digested peptides. These data were then interpreted by the DIA-NN data analysis pipeline using four
spectral libraries: the in silico predicted library; the fractionated plasma (DDA) library; the DDA project-specific cohort plasma library; and the DIA
project-specific cohort plasma library. First, we selected the optimal genetic association program as per its performance on the in silico predicted
spectral library. Then, we compared the number and spread of pQTLs across various libraries. Finally, we performed protein-based enrichment
testing on the maximal set of pQTLs from these libraries to link the genetic etiology of the diseases to function.

The ProteographTM Product Suite enables the robust detection of 
pQTLs in an unbiased manner

Program Benchmarking Results

A

Figure 3. Gene-based Functional 
Enrichment Testing Results (gProfiler).
We find that the pQTLs found across the libraries are enriched
for several complement, coagulation, and extracellular terms
across several ontologies, with top terms: “GO:CC:
extracellular region” (p = 7.87 x 10-17), “KEGG: complement
and coagulation cascades” (p = 1.42 x 10-15), “GO:CC:
extracellular space” (p = 6.18 x 10-12), “GO:BP: response to
external stimulus” (p = 6.39 x 10-10), and “REAC: complement
cascade” (p = 1.17 x 10-9). These term enrichments are in line
with previous research on Alzheimer’s linking complement
systems and their extracellular regulators to clinical expression
of the disease6.

Figure 2. Summary of Findings from Program Benchmarking Analysis.
A) Comparison of PLINK and BOLT Associations. REGENIE was found to be virtually identical in association effect sizes and association p-
values to BOLT, but slower; for the sake of simplicity, we dropped REGENIE from the analysis. BOLT finds almost a strict subset of the
associations (SNP, PG pairs) that PLINK finds. B) Comparison of PLINK and BOLT Effect Sizes. Across the association “hits” that are shared
between the two programs, the effect sizes are identical. C) Comparison of PLINK and BOLT Statistics. PLINK and BOLT statistics exhibit a
parabolic relationship; while the PLINK statistic is derived from the t-distribution (with degrees of freedom corresponding to the number of samples
in the analysis), the BOLT statistic is derived from the X2 distribution. BOLT finds a lower number of associations. We found PLINK to be twice as
fast as BOLT; thus, we proceeded forward with PLINK for the inter-library analysis.

Methods

Genotype Association Comparison Analysis
We used three programs; BOLT3, PLINK4, and REGENIE5; to 
compute associations between the genotypes and protein 
quantifications (i.e., pQTLs) and compared the number of pQTLs 
(total, cis, and trans) found amongst the three programs.
Gene-based functional enrichment testing and comparison 
to pQTL database
We used the online gProfiler tool to find functional enrichments 
amongst the pQTLs in our Alzheimer’s Disease cohort.

Genotype QC
From a starting dataset comprising 184 samples with genotyped data at 
665,608 sites, we took variants and samples with a call-rate ≥ 0.9 for a 
total of 174 samples across 481,798 sites. 
Protein quantifications
We acquired ProteographTM workflow and LC-MS measurements across 
the same 184 samples and performed peptide and protein inference using 
DIA-NN 1.82. We used a variety of spectral libraries for inference, including 
an in silico predicted library; fractionated plasma (DDA); project-specific 
cohort plasma (DDA); and project-specific cohort plasma (DIA).

Figure 2. pQTL Distribution Across the 
Genome for Project-specific Cohort 
Plasma Library (DIA).
X-axis depicts SNP chromosome and position; y-axis depicts
protein group (PG) chromosome and position. Cis-pQTLs are
shown in red; trans-pQTLs are shown in blue.

Table 1. pQTL Comparison Across Libraries.
We used PLINK with age, sex, Hispanic ancestry, batch, and the first ten genetic
principal components to compute pQTLs across various libraries. We found that
project-specific libraries had decreased sparsity as compared to generic library-
free or standard timsTOF libraries, leading to less protein drop-out from analysis
(and thus more pQTLs). We found that generally, cis- and trans-pQTLs were found
at equal rates, post-Bonferroni correction.

Library In silico
Predicted Library

Fractionated
Plasma - DDA

Project-
specific Cohort 
Plasma - DDA

Project-
specific Cohort 

Plasma - DIA
(Match between 

runs)

Number of Total NP:PGs 22752 14648 20940 20889

Number of Total PGs 5061 2976 4269 4198

Number of Processed NP:PGs 13625 12180 16457 18799

Number of Processed PGs 3787 2837 3980 4136

Bonferroni threshold 1.32E-11 1.76E-11 1.26E-11 1.21E-11

pQTLs (NP:PG) 69 81 95 110

pQTLs (PG) 56 63 70 70

SNPs 54 60 64 64

PGs 25 31 33 29

cis-pQTLs (PG) 22 27 35 40

cis SNPs 22 26 35 37

cis PGs 12 18 17 18

trans-pQTLs (PG) 34 36 35 30

trans SNPs 32 34 30 27

trans PGs 15 14 17 12

Our samples being enriched for Alzheimer’s Disease patients may have led to distinct pQTLs and pathways as compared to the 
INTERVAL dataset, which comes from blood donors (and thus, relatively healthy individuals).
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