Multi-omics data integration reveals clinically relevant biomolecules associated with type 2 diabetes
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Deep and unbiased plasma proteomics for disease cohort studies at scale

Type 2 diabetes (T2D) is a complex metabolic disease and a major international health challenge. Discovering molecular signatures
for accurate and early detection of T2D will be useful for disease prevention and to evaluate personalized risks. Despite the
functional insights proteins can provide, the large dynamics range of the plasma proteome has historically required the trade-off

between depth of coverage and study size.

To address this need, we introduced Proteograph™ Product Suite, a novel platform that leverages protein-coronas formed on the
surface of functionalized nanoparticles (NPs) enabling deep and unbiased proteomics, detecting thousands of proteins at scale. We
Assay performed on 388 T2D cases and controls from Qatar Metabolomics
Study of Diabetes (QMDiab). Here we integrated the comprehensive deep proteomics data with other omes collected from QMDiab
cohort as previously described?! to identify novel multi-omics signatures associated with T2D. Multi-omics data integration revealed
multi-omics synergies, medication profiles, known and potential biomarker signatures involved in the dysregulation of lipase activity

conducted a plasma proteome study using Proteograph™

and lipid change in alignment with clinical measurements.

Multi-Omics Factor Analysis! (MOFA?2) was applied to integrate proteomics data generated with Proteograph™
workflow? with other 12 data modalities from QMDiab cohort, and identify cross-ome variances related to phenotype °

Methods

MOFAZ2 captured T2D associated biological variances.
Proteomics data was collected in DIA LC-MS mode using a 30-

minute gradient on Bruker timsTOF Pro 2 mass spectrometer
and data was analyzed with DIA-NN v1.8 in single group-run in
library free mode.

Factor 1, 2 ,7 and 8 captured cross-ome variance, and had
significant associations with diabetes and clinical traits such as
triglycerides, HblAc. These variances are more likely to be
involved in T2D specifically.

é Processed transcriptomics, metabolomics and lipidomics data .
. were collected from QMDiab cohort as described?. CM.] H
: SM-
: Differential expression of single-ome molecular traits was HDF - -
° computed using mixed linear regression models adjusted for N EI.
. <> 20
: age, sex and body mass index. P-value was corrected as FDR. 4 B BRAIN-I
8 OLINK -
0 SOMA- .
SEER -
Multi-Omics Factor Analysis! (MOFA2) was applied to identify MIRNA - *
latent factors that represent underlying data variance across LSNEEEE NERERRREEEN

Unblased
:

Integrate deep proteomics with other omes identified biomarkers related to type 2 diabetes

Multi-omics data integration revealed potential biomarker
signatures, medication profiles, and multi-omics synergies.

Factor 2 captured i) difference of gene ITGB1(integrin Subunit Beta
1), protein Chromogranin A (CMGA) and mannose among the known
T2D associated molecules?,and potential biomarker signatures; ii)
metformin intake in T2D; iii) synergies of TGF-f1 (transforming
growth factor-B1) gene expression and encoded protein BGH3 level.
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Single ome captures biological variance, such as known T2D

Conclusion

biomarkers 1,5-AG, sugar metabolites, IGF1 protein and low
abundant proteins, but to different degree.
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Multi-omics integration using MOFA identified biological variances,
highlighting the cross-ome features related to T2D phenotype and
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Multi-omics integration revealed medication profiles, potential
biomarker signatures and multi-omics synergies.

Monocytes (%)
Eosinophils (%)

References

RNA = SEER [Protein 3
-Emm e s o LHZ \J\ln“";go
AS {QM
FIRAPE Em PCOLCE
. ¥
© ©
@ o
HAVCR2 /
) CHAD
pose,, [oEEH o ALY
2 0 1 o 0 1
Weight Weight
um beta-hydroxypyruvate metfonmn LD :
P I ! o
2-hydroxybutyrate . mo;‘; se mpeus 2
-
5 =
- &
P'i oy ,b.umms 1-FA16:1
._1 1 _1 TASSO-SfAte: i

0
Weight wgigm

The proteins identified with Proteograph workflow weighted in
factor 2 were significantly enriched in functional pathways related

to T2D.
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