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A novel cloud-native pipeline enabling deep, unbiased proteomics at extreme scale
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Enabling large-scale proteomics analysis with cluster computing Scalable, modular implementations of key algorithms for faster insight into big proteomics data
Liquid Chromatography coupled to Mass Spectrometry (LC-MS) Is a ubiquitous proteomics technology due to its 100 ? Runtime '
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Pipeline overview , Figure 2. Distributed FDR Estimation Gives ® 050 Figure 5. Modular Design Supports Multiple
Performance at Scale | Algorithms and Workflows. Designing around
Parallel Search: PSMs are generated 7 Our Spark-based MixMax implementation (teal) estimates 0.25 interfaces decouples workflows from any specific
° from each individual injection in parallel by 3 q-valugs In near-constant time, while an optimized smglg- 0.00 algorithms or implementations. Many implementations for
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implementation of the mixture-maximum aggregation, vertical scalability becomes a limiting Figure 3. Distributed PSM Rescoring (Human/Yeast/Arabadopsis) and processed by either ° PSMs across files and perform transition
(MixMax) algorithm® (to support peptide- factor due to size/memory constraints of a single Spark-based PSM rescoring (random forest; teal) allows MSFragger/Philosophers (purple) or our Spark pipeline refinement and/or cross-run matching,
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We have developed a modular pipeline for efficient and Published algorithms can be re-implemented using modern, - Granholm et al. 2012
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° Deep, scalable proteomics experiments require
that can support any algorithmic approach. current single-node tools. 6 Fondrie et al. 2021

next-generation data processing tools.
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