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LC-MS MS1 image map classification enables real-time sample quality control for nanoparticle-based deep untargeted proteomics
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Quality controls are important to generate high-quality 

deep untargeted proteomics data

The Seer ProteographTM workflow uses nanoparticles (NP) combined

with LC-MS (Liquid Chromatography-Mass Spectrometry) to enable

deep untargeted proteomics1. As with any proteomics workflow, good

quality controls (QCs) are important to facilitate the generation of high-

quality data, particularly in large cohort studies. Here, we present a

new QC procedure for the Proteograph workflow that utilizes machine

learning on MS1 image maps of the raw LC-MS data to help identify

unexpected patterns and highlight potential issues for further

investigation. These models provide real-time monitoring of data

quality, facilitate troubleshooting analysis for root cause investigations,

and ensure that only high-quality LC-MS data are used for downstream

differential proteomics analysis.

Applying image classification directly on raw MS1 data demonstrates great accuracy for 

Proteograph Assay quality control 
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Results

Input data was curated from thousands of LC-MS runs from internal 

database resulting in a set of high-quality, representative examples 

for model training, consisting of 1,313 unique MS runs across 5 

nanoparticles, 3 biological sample types, 5 MS instruments and 4 

SP100 Automation Instruments.   

MS1 image maps were created using MS1 scans extracted from raw

mzML files, binned into high-resolution images projecting spectrum

intensities into color maps along the m/z and retention time axes.

Modeling architectures on a range of neural networks were used

including off-the-shelf image recognition model EfficientNet2 by

Google Research with transfer learning, and customized sequential

CNN (Convolutional Neural Networks) built from scratch.

Model training was using >= 30 epochs, minimizing categorical

cross entropy loss with an Adam optimizer. The final models can

generate predictive probabilities, be employed to classify expected

nanoparticle from MS1 image map of a given run, and be applied to

highlight samples of possible QC issues including contamination (e.g.

detergents) causing skewed TIC (Total Ion Current) chromatogram or

operational errors resulting from sample swap or mis-annotations.

Performance evaluation was based on overall classification

accuracy, weighted average F1 score and error analysis of

misclassified samples out of 20% hold-out test set while entire input

data dataset was split into 60% for model training, 20% validation for

parameter tuning and 20% for hold-out test.

ProteographTM Product Suite

From sample to peptides, ready for analysis on most LC-MS instruments with a variety of 

proteomics methods including label-free workflows

Proteograph workflow provides unbiased, deep, and rapid proteomics at scale

Figure 1. Modeling architectures. (A) EfficientNet architecture

is an off-the-shelf pre-trained model capable of image

classification tasks and good for transfer learning.

(B) Customized CNN is a simplified modeling architecture built

from scratch consisting of 5 convolutional and pooling layers

sequentially and ending with a fully connected layer and

softmax.

Figure 2. MS1 image maps of good vs

poor MS runs. Training samples span 6

different classes, including MS1 image

maps of nominally good MS runs from 5

different nanoparticle types (NP1 to NP5),

and 6th class of maps of runs with sample

contamination issues identified by manual

retrospective investigation. The MS runs

with sample contamination are evident

from their MS1 image maps, including

more subtle cases which may be difficult

to identify by other means (e.g. TIC

traces).

Figure 3. Sample size learning curve and model

comparison. Performance in table (A) utilizing

EfficientNet with transfer learning converged at

0.97 accuracy. The customized sequential CNN

can attain >0.99 both in accuracy and weighted

average F1 score. Experimentation on sample

size learning curve (B) shows that >1K samples

can achieve >0.99 accuracy of using customized

CNN model.

Figure 5. Performance

evaluation: customized

CNN model.

Among 3 model training

conditions, (A) 30

epochs of 48 batch size,

(B) 40 epochs of 32

batch size and (C) 50

epochs of 24 batch size,

best attained overall

accuracy is 0.993 using

24 batch size. Left and

middle panels are curves

of training & validation

accuracy and loss. Right

panel shows confusion

matrix of each classifier

on the test set. At ~20

epochs performance

starts to converge, but at

>40 epochs, the models

begin to overfit as

training & validation loss

diverge.
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Figure 4. Visualization on embeddings of fully connected layer

using PCA. Feature characteristics of both (A) training set and (B)

hold-out test set are largely non-linear with top two principal

components explaining only ~35% of total variance.

Figure 6. Error analysis on misclassified MS runs in hold-out test set from

best performing model. There are only 2 cases of misclassifications out of

266 samples in hold-out test set. (A) NP1 was classified as NP3 with

predictive probability of 0.988. (B) A sample deemed as having

contamination by an expert MS reviewer was classified as a good

performing NP4 with probability of 0.925. Data quality of functional

metrics, e.g. peptide quantification, protein group counts, were further

examined and OK for both. (A) is likely a true misclassification for which

model can further improve on to avoid false positives alike, while (B) is

debatable and perhaps overly stringent labeling as sample issue from its

TIC. Discounting (B) can elevate model accuracy to > 0.995. As a result,

employing MS1 classification can better and more quantitatively curate

sample quality control over manually examining TIC chromatogram.
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Figure 7. Applications of real-time sample QC

and monitoring on assay plates. In (A), the

classifier highlights well(s) on the assay plate

with lower-than-expected predictive probabilities

for further QC follow-ups. In (B), the classifier

identifies an operational error (swaps or mis-

annotations between NP4 and NP5). Each tile in

figures corresponds to its sample’s physical well

position on the assay plate, with text annotations

showing the original class labeling and its

predictive probability, and class labeling with the

highest predictive probability among all classes.
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Proteograph workflow provides unbiased, deep, and rapid

proteomics at scale. Using good QC procedures is important to

facilitate generation of high-quality data with Seer’s technology

particularly in large cohort studies.

Machine learning models provides real-time sample QC for nanoparticle-

based deep untargeted proteomics with great accuracy (> 0.99) detecting

sample contamination and/or operational errors by applying image

classification directly on raw MS1 data.

Applications of this work facilitates fingerprinting of other signatures

in MS1 data (e.g. disease etiology3) and potentially enabling directed

analysis and comparison of unannotated spectra.
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