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An automated, scalable proteomics data analysis workflow ​

Liquid chromatography coupled with mass spectrometry (LC-MS) has grown into a

ubiquitous detection platform due to its speed, sensitivity, and applications. While

instrumentation hardware continues to improve, the concurrent increase in

translation from data to insight remains a bottleneck. Previously, we have

demonstrated a cloud-based serverless task-based infrastructure where closed-

source legacy algorithms are deployed as containerized applications leveraging

AWS elastic container service. These algorithms are orchestrated with AWS

services such as lambda functions and step functions. In this work, we focus

on scaling label-free LC-MS data analysis workflows to enable large cohort studies

using open-source algorithms leveraging distributed computing models in our AWS

infrastructure.

The 200-sample DDA and DIA study was processed, generating unbiased proteomics data of over 5,000 proteins

Containerization and tranching of files per container resulted in excellent scalability of feature finding and peptide 

spectral matching of the Alphapept pipeline across the AWS ECS task infrastructure

Modifying DIA pipelines to efficiently leverage cloud resources was implemented

Ingestion of raw MS data into the Delta Lake provides a basis for ultra-fast raw signal interrogation with elastic 

computing features such as autoscaling
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Figure 3. Laboratory automation and cloud processing. Vendor-neutral LC-MS files are automatically uploaded to our

AWS ecosystem via transfer agents and parsed into multiple file formats for processing. Files are then processed by various algorithms

deployed as nodes in the elastic container service repository and pipelines are orchestrated by the Prefect and AWS step function orchestration

engines. Persistent data is stored using a combination of document and relational databases while intermediate objects (e.g., mass traces) can

be stored in S3.

Challenges

➢ Most LC-MS data analysis solutions are built for desktop environments and are closed-source ‘black-

box’ executables and cannot be distributed natively

➢ Differential proteomics data analysis of large data sets (‘group runs’) require data aggregation which 

is memory/disk limited

➢ Existing applications are not designed for increasing compute and memory

➢ There is a need to modularize the ever-growing collection of applications for both DDA and DIA 

acquired LC-MS data

Solution

A carefully curated AWS proteomics data analysis workflow with choices, error handling, and exception 

fallbacks including:

➢ Automated file transfer to the cloud and conversion to  standard mzML, parquet and HDF5 filetypes

➢ Automate single file analysis for every injection upon raw data file arrival and near real-time QC

➢ User-specified group run analyses with pre-defined recipes and settings (possible with 1000s of files)

➢ Spark-accelerated modular workflows built on top of open-source platforms such as Alphapept

Cloud-First Laboratory Coordinating automated injection analysis

Multiple cloud services working in harmony

Group run API

Figure 1. Scalability and relative cost. Our

scalable search pipeline can efficiently execute off-the-

shelf search engines engineered for Desktop execution

environments. Cloud architecture enables scalability to

hundreds or thousands of files by leveraging parallel

processing and optimizing resource allocation. Total

runtime is reduced significantly by employing parallelism,

allowing analysts to receive results from hundreds of

files within a single eight-hour workday. While runtime

is similar across search engines, significant differences

can be observed in total cost. Library-based searches

are considerably less costly and more scalable than

database searches due to the reduced search space and

alignment overhead.
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Figure 2 Scalability. We further experiment scalability principles. We

demonstrate that individual file processing on the ECS cluster auto-scales

well for feature finding and PSM matching. However, for steps that require

data aggregation vertical scalability becomes a limiting factor due to

size/memory constraints of a single machine requiring an alternative

approach.

Figure 4. Enabling parallelization of a desktop application. Revising implementation or

architecture of existing algorithms can yield significant benefits in a cloud processing environment without

changing any aspect of the algorithm or its results. The diagram shows an approach to distribute execution

of the EncyclopeDIA search, alignment, and quantification algorithm by parallelizing loops and eliminating

spurious data dependencies. These changes enable searching thousands of files with EncyclopeDIA in

under 4 hours with only moderate computational resources.

Figure 5. Protein/Peptide identifications 

Example. 200 plasma samples Alzheimer’s Disease 

study (Poster # PP02.129) analyzed with 30 min DIA and 60 

min DDA LC-MS analysis were processed as a single group 

run for each acquisition mode using DIA-NN and MSFragger

respectively.
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Figure 7. Apache spark 

with Databricks.
Target value extraction using 

elastic computing. We 

demonstrate XIC of multiple 

charge states of a peptides 

across 7700 raw MS files in under 

5 minutes. Databricks autoscaling 

function allows clusters to scale to 

arbitrary size depending on the 

workload.

Figure 6. Peptide-centric search.
We further experimented with the Delta Lake

architecture. Briefly, raw MS files are

automatically converted to the parquet format

and directly loaded to delta tables. Raw

chromatogram data is then interrogated using

transformation functions by applying the

following steps:

1. Create spark dataframe from list of target

peptide m/z

2. Define a set of data transformation

functions to set XIC boundaries

3. Transform the XIC targets

4. Read in the MS data, keeping track of

input file name

5. Define MS data transformation functions

6. Transform the MS data

7. Define functions to facilitate join

8. Apply a range join

Target ID Sequence m/z m/z min m/z max RT RT min RT max

1 PEPTIDE/3 421.7578 421.7536 421.762 11 9 13

2 PEPTIDE/2 629.3477 629.3414 629.354 11 9 13

On-demand Raw File Analysis
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