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Deep and unbiased plasma proteomics for disease cohort studies at scale Deep proteomics enhances disease classification and biomarker characterization of early NSCLC cohort

Introduction

Results

Our ~20,000 genes encode over one million protein variants, given alternative splice forms, allelic variation, and protein modification. Though
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large-scale genomics studies have expanded our understanding of biology, similarly, scaled deep and untargeted proteomics studies of biofluids Q
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NSCLC subjects and non-cancer controls. We identified 2,499 plasma proteins, with 1,992 present in 2 25% of the samples. Leveraging this data, * .o . : E: .

we created a biomarker classifier distinguishing NSCLC from controls with average area under the receiver operating characteristic curve of 0.91." Across Cohort 22 Peptides ~ 20.25Samples ~ Mean/Sample - o Bl e T R 2

In this study, we now re-analyze the data with the recently released DIA-NN software and leveraged cloud architecture to successfully scale up G Median = 8 comosze om0t | o ""-’-'Z;;L LT et N ' Y

and process large cohort group runs. This enabled enhanced proteome depth (41% increase) while improving the accuracy (0.95) of the classifier. £ cooossse  3g10x1o* O 25 R -. .y

Our results outline workflows for robust biomarker discovery and cohort subtyping. s N 50 . a0l -
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Cohort classification was done with implementations , o B _ . exbressed broteins _ _ _ , _
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orotein intensities and their embedding from a Figure 1. Architecture diagram of VAE neural network. protein groups that were significantly differentially expressed after Detailed list of enriched terms after correction for multi-correction B) VAE embedding reflects the classification power of different
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distinct separation of cancer and healthy subjects.

DIA-NN combined with the cloud-based large group run more Enhancement of classification performance and stability with VAE, : : : , 1Blume et al. Nat. Comm. (2020)
Differentially expressed proteins can lead to a better biomarker 5 )
References Demichev et al. Nat Comm. (2020)

discovery and disease characterization. _ _
¢ 3 Raudvere, Kolberg et al. Nucleic Acids Res. (2019)

CQnCI USion @ sensitively identifies protein groups across the cohort (~4000 @ Random Forest, and SVM to AUC-ROC 0.95 compared to the
vs the previous ~2,500). previous AUC-ROC 0.91.
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