
Seer, Inc., Redwood City, CA – hkitano@seer.bio

Improving LC-MS Data Analysis Pipelines to Leverage Distributed Compute Engines
Iman Mohtashemi*. Hugo Kitano, Andrew Nichols, Seth Just, Jian Wang, Theo Platt, and Serafim Batzoglou

Seer, Inc., Redwood City, CA 94065, USA

Liquid chromatography coupled with mass spectrometry (LC-MS) has grown into a ubiquitous detection platform due to its

speed, sensitivity, and applications. While instrumentation hardware continues to improve, the concurrent increase in translation

from data to insight remains a bottleneck. Previously, we have demonstrated a cloud-based serverless task-based infrastructure

where closed-source legacy algorithms are deployed as containerized applications leveraging AWS elastic container service.

These algorithms are orchestrated with AWS services such as lambda functions and step functions. In this work, we focus on

scaling label-free LC-MS data analysis workflows to enable large cohort studies using open-source algorithms leveraging

distributed computing models in our AWS infrastructure.

An automated, scalable proteomics data analysis workflow Proteomics Pipelines with a smart cloud infrastructure
Application of open-source modular infrastructures;

Alphapept and Apache Spark

Challenges

➢ Most LC-MS data analysis solutions are built for desktop environments and are closed-source ‘black-box’ executables and

cannot be distributed natively

➢ Differential proteomics data analysis of large data sets (‘group runs’) require data aggregation which is memory/disk limited

➢ Existing applications are not designed for increasing compute and memory

➢ There is a need to modularize the ever-growing collection of applications for both DDA and DIA acquired LC-MS data

To improve scalability limits and large-scale proteomics data analysis infrastructure we have evaluated the recently

published Alphapept platform1. Here are highlighted benefits of this platform:

➢ Python programming language, has easy-to-understand syntax with excellent support of scientific libraries making it easier

for developers from different backgrounds to contribute to and implement new ideas. Furthermore, all major cloud vendors

support the python language for distributed computing (e.g., pyspark)

➢ Easy on-ramp for community validation and contributions through the concept of literate programming, implemented in

Jupyter Notebooks of the different modules. A baseline framework for continuous integration, testing, and benchmarking

enforces solid software engineering principles

➢ Efficient HDF5 file formatting and just-in-time machine code compilation on CPU and GPU, achieving hundred-fold speed

improvements while maintaining clear syntax and rapid development speed

➢ Distributed computing potential using AWS elastic map reduce (EMR) and Pyspark

A combination of AWS services to process, store, and

retrieve LC-MS data

The AWS ecosystem at Seer

Solution

A carefully curated AWS proteomics data analysis workflow with choices, error handling, and exception fallbacks including:

➢ Automated file transfer to the cloud and conversion to standard mzML, parquet and HDF5 filetypes

➢ Automate single file analysis for every injection upon raw data file arrival

➢ User-specified group run analyses with pre-defined recipes and settings (possible with 1000s of files)

➢ Spark-accelerated modular workflows built on top of open-source Alphapept

Integrating Alphapept with Apache Spark

Routine multi-file analysis

Multiple cloud services working in harmony

The coordination of automated file analysis from MS instruments to data storage with cluster computing APIs

➢ Supporting hundreds of terabytes of incoming LCMS data annually

➢ Enabling large cohort group runs

➢ Spark-accelerated workflows supporting thousands of group run analysis

Results
A next-generation platform capable of analyzing large cohort proteomics studies

in hours supporting fleets of vendor neutral LCMS instruments

➢ Most processing is embarrassingly parallel and

scales well

➢ Key steps (e.g., alignment, quant) require many

more resources, increasing cost and limiting

run size

➢ DIA-NN can process 1000s of samples in under

8 hours (without MBR)

➢ Scaling beyond ~5000 samples will require:

➢ Modularization of pipelines

➢ Efficient data access at scale

➢ Distributed implementations of key algorithms

Using target/decoy and entrapment analysis we demonstrate Alphapept’s

search strategy in comparison with other search engines at a reasonable

FMR.

We integrate pyspark for relieving computational bottlenecks

where data aggregation is required such as chromatographic

alignment.

LC-MS Cloud Connectivity Open-Source Code Base

➢ Alignment is an O(n2) operation, requiring nC2 operations

comparing each of the n files to each other

➢ Data from each of the n files should be read once, before any

calculations, to eliminate any redundant I/O operations

➢ When each parallelized task needs access to read-only file data,

Spark supplies "broadcasting" to speed up the transfer of data

into each executor.

➢ Broadcasting caches data into every executor, enabling each

execution to begin almost instantaneously

References
1Strauss et al., 2021 BioRxiv

Search Engine Comparisons

*

https://github.com/MannLabs/alphapept

Label-free Quan Pipeline

