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Deep learning approaches to integrate large-scale datasets by correcting batch effects
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Conclusion

Batch effects can contribute to a large amount of the noise in Deep learning-based approaches can learn to integrate diverse

@ large-scale proteomics datasets, compared to biological @ proteomics datasets well. Our extension of DANN can harmonize
variations. We have observed a large batch effect attributed data across technical factors, while maintaining the fidelity of the
to mass spectrometers and LC columns in our dataset. biological signal in the data.
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classify amongst the three Nanoparticles. C) PCA embeddings of the learned features from our DannCIf and D) DannRecon models.
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