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Conclusion
Batch effects can contribute to a large amount of the noise in 
large-scale proteomics datasets, compared to biological 
variations. We have observed a large batch effect attributed 
to mass spectrometers and LC columns in our dataset.

Deep learning-based approaches can learn to integrate diverse 
proteomics datasets well. Our extension of DANN can harmonize 
data across technical factors, while maintaining the fidelity of the 
biological signal in the data.

While DannClf can harmonize the data well, the representations it 
learns are most useful for classification. Future work such as our 
unsupervised variant, DannRecon, may learn more general-
purpose batch corrected representations.

1 Blume et al. Nat. Comm. (2020)
2 Ferdosi et al. PNAS (2022)
3 Choi et al. Bioinformatics (2014)
4 Johnson et al. Biostatistics. (2007)
5 Haghverdi et al. Nat. Biotechnol. (2018)

References

Introduction

Recent advances in liquid chromatography mass spectrometry (LCMS)-based proteomics analysis have enabled the efficient profiling of
thousands of proteins from single LCMS runs. The ability to run untargeted, high throughput LCMS experiments has opened the door to
large-scale cohort studies for biomarker and drug target discovery1,2. When conducting large-scale cohort studies, technical confounding
can be introduced as samples are run across different MS instruments, LC columns, dates, and geographic locations. In order
to integrate these samples across datasets for joint analyses, one needs to both diagnose this batch effect and apply methods to correct
for it.

Here we compare methods for characterizing batch effects in proteomics data. We have evaluated the presence of a batch effect using
multiple batch effect diagnosis methods, including Principal Components Analysis-based approaches, local-neighborhood diversity
measures, and machine learning classifier-based methods. Next, we benchmark batch effect correction methods for protein abundance
data. These include traditional methods often used in proteomics and genomics as well as a novel deep learning-based batch correction
method we developed.

Batch effects in large-scale proteomics analysis Deep learning approaches to integrate large-scale datasets by correcting batch effects
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Figure 2. Characterization of batch effects 
in the data. 
A) PCA embeddings of protein group log
intensities of each run, colored by four
different covariates. B) Principal Components
Regression10, showing that batch variables
(LC column and MS Instruments) are major
contributors to the variance in the data, over
analysis of these control plasma samples. C)
Local Inverse Simpson’s Index7 (LISI) score,
measuring effective diversity of a label within
small neighborhoods, which shows low levels
of integration of batch variables. While (B)
shows where signal resides in a data matrix,
(C) shows the level of mixing, and is better
suited for comparing batch effect correction
methods.

Results

Figure 1. Adversarial neural network architectures to learn batch-invariant
representations.
Protein group intensity data is fed forward through a fully connected ReLU encoder
stage (green), that is trained to perform poorly on a Triplet Loss which tries to
discriminate technical batches. At the same time, this representation is trained to
minimize either (A) two classification tasks as in DannClf, or (B) a reconstruction loss
as in DannRecon.

We applied each method on our dataset to
produce batch-corrected representations,
which we then evaluated with batch
characterization metrics. We applied
baseline methods that are traditionally used
in proteomics or other omics data analysis
pipelines like PCA, MSStats3, and
ComBat4; methods based on nearest
neighbor matching like MNN5 and
Scanorama6;and Harmony7 which is an
iterative clustering + translating algorithm;
and deep learning-based approaches like
scVI8. We then applied our developed, deep
learning approach by extending Domain
Adversarial Neural Networks9 (DANN).
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BLCMS Data
We collect a batch-diverse dataset
using Seer’s ProteographTM Product Suite.
Our dataset includes 882 LCMS runs (DDA)
across:

o Two types of control plasma samples

o Three Seer Proteograph nanoparticles 
(NPs)

o Three LCMS instruments

o Eight LC columns.
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Figure 3. Dataset mixing and biological
signal preservation of batch effect
correction methods.
LISI scores of all correction methods we
applied. Though Scanorama mixed the
best with respect to Machine and Column,
it overmixed the biological variables.
DannClf and DannRecon do not have this
issue and are able to mix the technical
variables while preserving the distinction
between biological variables.

B

A C

D

Figure 4. Quantitative and qualitative assessment of batch corrected representations for downstream tasks. 
A) Comparison of using batch corrected representations for classifying biological phenotypes across batches. For example: for MS Instruments (Machine), a KNN
classifier is trained on Orbitrap-1 and Orbitrap-2 data to classify between the two control plasma samples (PS1 or PS2), and the test accuracy is assessed on
Orbitrap-3. This is repeated for testing on Orbitrap-1 and Orbitrap-2. Note, this same procedure is repeated for Column. B) The same but the prediction task is to
classify amongst the three Nanoparticles. C) PCA embeddings of the learned features from our DannClf and D) DannRecon models.
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