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ProteographTM Product Suite Delivers Untargeted, 
Deep and Rapid Proteomics at Scale

Blood plasma is the ideal biospecimen to assess the health and diseased states of humans. However, the wide
dynamic range of the plasma proteome limits in-depth coverage in large-scale proteomics studies with current
technologies. Here we have developed a fast and scalable technology that employs intricate protein-coronas formed
on the surface of engineered nanoparticles (NPs) to enhance the depth of plasma proteomes. A panel of 5 engineered
NPs allows rapid quantification of thousands of proteins across 7 orders of magnitude from plasma with high
precision1. The key to expand proteomics applications of NP is to characterize physicochemical properties driving
protein corona formation while exploring biological pathways interrogated with each NP. We have engineered and
tested a set of functionalized NPs with specific physicochemical properties and profiled plasma proteomes determining
differentially enriched proteins with LC-MS/MS analysis. Based on the quantitative differences, we have modeled
protein intensities and abundances of protein families as a function of NP’s physicochemical makeup. Proteins are
differentially sampled by specific physicochemical characteristics of the NPs including charge, hydrophobicity, and
specific chemical groups. This allows NPs to sample the proteome at the proteoform level across a wide dynamic
range by affinity and concentration. Our data exemplifies how NPs can be further optimized to interrogate proteins
across biological pathways and facilitate unbiased and broad proteome coverage. Our data allows us to design and
engineer NPs to capture proteins in plasma broadly or optimize NP panels for specific protein families, PTMs or other
molecular classes for next generation large-scale omics studies and biomarker discovery.

Proprietary Engineered Nanoparticles 
Enables Deep Plasma Proteomics at Scale

Figure 1. Depth of coverage and analysis precision achieved with different label-free plasma proteomics
workflows. A) . Conventional label-free plasma proteomics workflows compared to Proteograph Product Suite with a
30 minutes DIA analysis for each 5 NP and total analysis time of 2.5 hrs. B) Proteograph data resulted in ~3000
protein groups identification (1% FDR at protein and peptide level) across 7 orders of magnitude dynamic range DIA-
NN (library-free). C) Proteograph assay precision showed improved replicate CV compared to fractionation methods2.

Ø Using machine learning, we modeled relationships between physicochemical NP properties and differential abundance of individual proteins and protein classes within NP coronas.

Ø 23% of the abundance of C-reactive protein (CRP) as an example in a protein corona was associated with NP charge functionalization, and 12% could be allocated to polymeric and sugar surface 
functionalization. In contrast, we observed the abundance of plasma kallikrein (KLKB1) to be unaffected by NP charge decoration but more than 50% driven by sugar functionalization.

Ø Our results suggest that we can model the relationship between NP surface functionalization and specific proteins or protein classes in complex biological samples and use this information to guide future NP 
design to further increase the utility of the Proteograph Product Suite in proteomics research and biomarker discovery.
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Modeling Protein Intensity Across Samples as a Function of Nanoparticle Properties

Figure 2. Intricate relation of protein properties,
physicochemical makeup of NPs, and protein-corona
composition. A) Example of physiochemical and functional
design elements. B) Unsupervised hierarchical clustering of
median-normalized log10 protein intensities (1% false
discovery rate (FDR) on protein and peptide level). Assay
replicates of NP classes are median averaged. C)
Enrichment analysis (1D enrichment) indicates protein class
and function (Uniprot Keywords) specific corona
composition in relation to NP-properties. The log2 –odds
ratios of the NPs characteristic for each cluster are depicted
as “fingerprint” diagrams on the right, with starred results
indicating significance (p < 0.05) in Fisher’s Exact Test.

Figure 3. Machine-learning dissection of protein-corona
composition. A) Based on variance decomposition analysis
of normalized protein intensities individual contributors to
observed protein corona differences are estimated using a
linear mixed effects model. On average, more than 50 % of
the variance in protein corona composition for a particular
protein can be explained by NP properties (green). B) NP
specific variance broken down into reaction class and
functional groups. C) Exploring to what degree individual
NP-properties explain variation of a protein in the protein
corona. D) Explained variance for functional group “charge”
split into high (explained variance > 30%), middle (explained
variance < 25% and >10%), and low (explained variance
<10%). Wilcox test was used to determine p-values. Y axis
depicts the absolute of predicted isoelectric point of each
protein – 7.4 (pH of corona formation). The larger that value,
the more likely the protein has a net charge in the assay and
can be affected by NP charge.

Conclusions
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