Deep Plasma Proteomics at Scale: A machine learning enhanced multi-nanoparticle approach to improve
“ SEC the depth of plasma proteome coverage
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Proteograph™ Product Suite Delivers Untargeted, Proprietary Engineered Nanoparticles
Blood plasma is the ideal biospecimen to assess the health and diseased states of humans. However, the wide Modeling Protein Intensity Across Samples as a Function of Nanoparticle Properties
dynamic range of the plasma proteome limits in-depth coverage in large-scale proteomics studies with current
technologies. Here we have developed a fast and scalable technology that employs intricate protein-coronas formed A B C
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on the surface of engineered nanoparticles (NPs) to enhance the depth of plasma proteomes. A panel of 5 engineered
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> Using machine learning, we modeled relationships between physicochemical NP properties and differential abundance of individual proteins and protein classes within NP coronas. 1. Blume et al. Nat. Comm. (2020)

Figure 1. Depth of coverage and analysis precision achieved with different label-free plasma proteomics
workflows. A) . Conventional label-free plasma proteomics workflows compared to Proteograph Product Suite with a
30 minutes DIA analysis for each 5 NP and total analysis time of 2.5 hrs. B) Proteograph data resulted in ~3000
protein groups identification (1% FDR at protein and peptide level) across 7 orders of magnitude dynamic range DIA-

NN (library-free). C) Proteograph assay precision showed improved replicate CV compared to fractionation methods?. > Our results suggest that we can model the relationship between NP surface functionalization and specific proteins or protein classes in complex biological samples and use this information to guide future NP
design to further increase the utility of the Proteograph Product Suite in proteomics research and biomarker discovery. Publications

2. Ferdosi et al. in revision
» 23% of the abundance of C-reactive protein (CRP) as an example in a protein corona was associated with NP charge functionalization, and 12% could be allocated to polymeric and sugar surface

functionalization. In contrast, we observed the abundance of plasma kallikrein (KLKB1) to be unaffected by NP charge decoration but more than 50% driven by sugar functionalization.
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